Influence of Porous Spherical-Shaped Hydroxyapatite on Mechanical Strength and Bioactive Function of Conventional Glass Ionomer Cement

نویسندگان

  • Szu-Yu Chiu
  • Yukari Shinonaga
  • Yoko Abe
  • Kyoko Harada
  • Kenji Arita
چکیده

Glass-ionomer-cement (GIC) is helpful in Minimal Intervention Dentistry because it releases fluoride ions and is highly biocompatible. The aim of this study is to investigate the mechanisms by which hydroxyapatite (HAp) improves the mechanical strength and bioactive functioning of GIC when these materials are combined to make apatite ionomer cement (AIC). A conventional GIC powder was mixed with porous, spherical-HAp particles (HApS), crystalline HAp (HAp200) or one of two types of cellulose. The micro-compressive strengths of the additive particles were measured, and various specimens were evaluated with regard to their compressive strengths (CS), fluoride release concentrations (fluoride electrode) and multi-element release concentrations. The AIC was found to release higher concentrations of fluoride (1.2 times) and strontium ions (1.5 times) compared to the control GIC. It was detected the more release of calcium originated from HApS than HAp200 in AIC. The CS of the AIC incorporating an optimum level of HAp was also significantly higher than that of the GIC. These results suggest that adding HAp can increase the release concentration of ions required for remineralization while maintaining the CS of the GIC. This effect does not result from a physical phenomenon, but rather from chemical reactions between the HAp and polyacrylic acid of GIC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of porous-hydroxyapatite incorporated into glass-ionomer sealants.

The purpose of the present study was to evaluate the mechanical and chemical properties of a novel glass ionomer cement for use as a pit and fissure sealant containing a porous hydroxyapatite, namely, apatite ionomer cement (AIC). Control sealant samples were used Fuji III (GIC-S). The experiment sealant samples (AIC-S) consisted of porous spherical hydroxyapatite (HApS) particles added at 28 w...

متن کامل

Reinforcement of Glass Ionomer Cement: Incorporating with Silk Fiber

The aim of this study was to synthesis of glass ionomer-silk fiber composite and to evaluate the effect of adding natural degummed silk fiber on the mechanical properties of glass ionomer cement (GIC). For this purpose, natural degummed silk fibers with 1 mm in length and 13-16 µm in diameter were added to the ceramic component of a commercial glass ionomer cement in 1, 3 and 5 wt. %. Compressi...

متن کامل

Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties

Chen, S. 2016. Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1413. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9670-8. Dental restorative cements are placed in a harsh oral environment where they are subjected to thermal shock, chemical degradatio...

متن کامل

Evaluation of Microleakage of Bioactive Glass, Bioactive Glass-Hydroxyapatite and Mineral Trioxide Aggregate-An in Vitro Study

Introduction: The aim of this study was to evaluate the sealing ability of Bioactive glass (BG) and Bioactive glass-Hydroxyapatite (BG-HA) in comparison to Mineral Trioxide Aggregate (MTA). Methods: The sealing ability of Bioactive glass and Bioactive glass-hydroxyapatite mixed with glass ionomer cement and Mineral Trioxide Aggregate used as retrograde filling material was assessed by bacterial...

متن کامل

Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017